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1. Introduction 

In recent years there has been a considerable interest in the chemical and physical 
properties of one-dimensional materials such as tetracyanoquinodimethane 
(TCNQ) charge-transfer salts, K2[Pt(CN)4]Br0.3.3H20 mixed-valence complex, 
polymeric sulfur nitride (SN)x, and so on in the field of solid-state science [1, 2]. 
Quantum-chemical treatments of the electronic structures of these materials have 
been achieved with the use of the tight-binding LCAO SCF MO method [3-6]. 
Almost all of  the calculations, however, are based on methods for treating polymers 
composed of an infinite repetition of unit cells along one direction (main chain 
direction). Indeed, this approach is justified as a starting point owing to the week 
interactions in the remaining two lattice-vector directions (let us denote these 
simply as interchain interactions), but a more accurate treatment should include 
the interchain interactions in the next step, since these interactions seem to have a 
subtle influence on the electronic structures of the main chains and on the coopera- 
tive phenomena manifesting themselves in one-dimensional materials [7]. An 
orthodox approach to satisfy this requirement is to calculate the three-dimensional 
crystal orbitals with the use of the method.established by Ladik et al. some time 
ago [8]. However, the time required for the computation to accomplish the SCF 
procedure for the Fock equations in the three-dimensional Brillouin zone is too 
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excessive and hence not practical for the present generation of computers, even at 
the level of  the CNDO approximation [9]. Thus there have been no actual SCF 
calculations of crystals to the authors '  knowledge. 

An approach to the electronic structures of  three-dimensional molecular crystals 
which avoids these tedious calculations has been reported by Santry et  al. [10, 11]. 
This method is based on SCF perturbation theory, employing the Hamiltonian of 
a non-interacting molecule constituting a unit cell as the zeroth order and regarding 
all intercell interactions as the perturbation. However, it is not suitable for one- 
dimensional molecular crystals in which the intrachain interactions can no longer 
be treated as a perturbation. 

In the present paper, we develop a specific non-empirical tight-binding LCAO SCF 
MO theory based on the SCF perturbation technique for a one-dimensional 
molecular crystal, the unit cell of  which is of a closed shell structure. In this theory, 
the interactions between a unit cell in the main chain and those in the nearest 
neighbouring chains are regarded as the perturbation, with the main chain polymer 
as the unperturbed system. This approach can be applied not only to one-dimen- 
sional molecular crystals, but also to analyses of the interactions among polypeptide 
chains in order to investigate their higher structures. 

2. Fock Equation of One-Dimensional Molecular Crystals 

At first we begin by defining the lattice vectors of  the one-dimensional molecular 
crystal and introducing the conventional Fock equation for the closed-shell tight- 
binding LCAO SCF MO calculation [8] for this system. Some notations used 
throughout this paper are also defined in this section. 

An arbitrary unit cell in the system is defined by a linear combination of the three 
independent lattice translation vectors al, a2, and a3 as 

a = Aal  + Aa2 + jaaa -- [j~,A,Ja], (1) 
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Fig. 1. Schematic representation 
of the unit cells and the lattice 
translation vectors in a one- 
dimensional molecular crystal. 
The direction along a1 is taken to 
that of the main chain 
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where the j{s take all positive and negative integral values including zero. We 
refer to this unit cell as the [Jl, j2, ja]th cell, and take the [0, 0, 0]th one as the 
reference cell. It is supposed that there are 2N~ + 1 cells along each direction of 
a~ without a loss of generality. As shown in Fig. 1, we choose the lattice translation 
along the main chain to be al, and those along the interchain directions a2 and a3. 
In our one-dimensional molecular crystals, ]al] is significantly smaller than ]a21 
and laa[. Each unit cell contains N~ nuclei whose charges are z~ and n atomic 
orbitals (AO's) assigned by the Greek letters tz, v, p, and (r. It is to be noted that the 
vectors ai are not necessarily orthogonal (triclinic system), and the corresponding 
reciprocal lattice vectors K{s (i = 1, 2, and 3) are defined so that the relation 

a~Kj --- 2~r3 u, (2) 

may be satisfied [12], namely, 

K1 = 27r a2 x a3 
al'(a2 • a~) 

/(2 = 27r a 3 x al a2'(aa • al)" (3) 

K3 = 27r al • a2 
a3"(al x a2) 

Thus, any point in the first Brillouin zone can be defined by the wavevector 
k = (k~, k2, ka), where k~'s are the vectors along the directions of K~'s, respectively, 
under the condition, 

7r  -B" 
- - - < k l < - -  

a l  a l  

77 

- - -  < k2 < - - '  (4) 
a 2  a2  

71. 77- 
- - - < k a < - -  

a3 aa 

In the tight-binding LCAO SCF MO method, a one-electron crystal orbital for the 
closed-shell structure is given with the aid of Bloch's theorem [13] as follows: 

r = ~ / ~  ~" ~ ~ /__, exp [i(j~k~az + jzk2a2 + j3k3a3)] 
0 0 ] 1  = . i z = o  J3 = u 

�9 c . ~ ( k ) x . ( ~  - ~), (5) 

N = (2N1 + 1)(2N2 + 1)(2N3 + 1), (6) 

where s specifies the energy level, C,~(k) the AO coefficient, X,(V - a) the/xth AO 
in the [j~,j2,j3]th cell, and N the total number of unit cells. Note that C,~(k) is 
generally a complex number. The density matrix is defined for the wavevector k as 

Oe(~ 

R~v(k) = ~ C*~(k)C~(k). (7) 
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The total density matrix for the system is given by using Eq. (7) as 

2 uz BZ uz 
e.vfjl,j2,ja] = ~ k~ ' ~ ~ exp [i(jlklal + j2k2a2 + jakaaz)]" Ru~(k), (8) 

where the summation of k in Eq. (8) extends over the first Brillouin zone, and is 
replaced by the integral form in the molecular crystal as follows: 

BZ BZ BZ 

The density matrix element in Eq. (8) generally signifies the bond order between 
the/zth AO in the [0, 0, 0]th cell and the vth AO in the [jl, j2~/8]th cell. The crystal 
orbital in Eq. (5) is given as the solution of a set of the Fock equations of the 
system, 

[Fur(k) - es(k)S,~(k)]C~s(k) = 0 (t* = 1, 2 , . . . ,  n), (9) 
l) 

where es(k ) is the energy level of the crystal orbital at k, describing the energy band 
over the Brillouin zone. F,,~(k) is the Fock matrix element defined as follows. 

F.~(k) = exp [i(jlklal + j2k2a2 + jakaaa)] 
j l = o  . / 2 = 0 / . 3 = 0  

�9 {H~,v[j~,j2,ja] + G,,~fj~,j2,ja]}, (10) 

Hu~[jl,j2,j3 ] = <X.[0, 0, O][hClxv[j~,j2,j3]), (11) 

s~=o ~ - R  ' " . -, (12) h e = - ~ V  - j~=oj==o lr c~[J1,Jz,Ja]] 

G.vfjl,j2, ja] = ~.~ ~ ~2 ~ ~ ~ ~ 
D a Jz' = 0 J 2 ' = 0  -/a ' = 0  ]1 " = 0  /.a " = 0  ~a"=0  

p [j . . . . . . . . . . . .  
oa z - - J 1 , J 2 - - J 2 , J a - J a ]  

0 1 . . . . . . . . . .  xx �9 { (Xu[0 ,  O, ]x~[ j z , J2 ,Ja]~  xo[j , , j2,Ja]xo[Jz,J2,JaJ/  

_ 1 (  . . . . . . . . .  ~ . . . . . . .  j 2 , j a ] ) } ] ,  (13) 2 x.[0, 0, O]x.[a.j=,jd 1 xAa ,J=,Jdx [J,, 

where xa[J,, j2, s  and R~[j,, J2, ja] denote the/ , th  AO and the coordinate of the ath 
nucleus, respectively, in the [j , , j2,ja]th cell. S~(k) is the overlap matrix element 
defined as: 

Su~(k ) = exp [i(jlk~al + j2k~a2 + jakaaa)]'Su~[j~,j>j3], (14) 
i 1 = 0  / '2=0 / 'a=0 

s .~[j~, j~, jd  = (x.[O, O, O][xv[j~,j2,jd>. (15) 

Since the set of the Fock equations of the usual one-dimensional polymers should 
be solved at 10 ~ 20 k~ values in the one-dimensional Brillouin zone [14, 15], there 
are 103 ~ 203 Fock matrices to be diagonalized for three-dimensional calculations 
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for each SCF iteration. In the case of the one-dimensional molecular crystals, one 
can avoid the tedious calculations of this type with the use of the perturbation 
technique shown in the next section. 

3. Perturbed Fock Submatriees 

We expand the SCF matrix equation in Eq. (9) in a perturbation series as far as the 
second order: 

Fu,(k) = F~~ + hF~)(k) + )t2F~)(k), (16) 

S,,~(k) = S~~ + hS~'(k)  + AzS~'(k). (17) 

The energy levels in Eq. (9) and AO coefficients in Eq. (5) are similarly expanded as 

~.(k) = 4~ + a4~'(k) + a24='(k). (18) 

C,,(k) = C~~ + hC~{'(k) + h2C~(k).  (19) 

The perturbed density matrices for the wavevector k as far as the second order are 
given as follows. 

occ 

R~~ = ~ C'*(~162176165 , , , , ,  ,, (20) 
8 

O C t  

R<u~>(ir = ~ { Ca .,(o)(k) C,,(l'(k) + C*<n(k)C$~ (21) 
8 

OOO 

*(2) (0) *(m (2~ C*(l)qc~Cmgk~ + C~, (k)C~, (k)). (22) 
s 

The perturbed total density matrices are given by using Eqs. (8), (20), (21), and (22) 
a s :  

p(m �9 �9 �9 2 sz Bz 

,~ BZ BZ BZ 

uv [Jl,J=, Ja] = 
ka 

,~ BZ BZ BZ 

l~v [ J 1 ,  ] 2 ,  J a ]  = 
ka 

BZ 

n,. (k). ~ exp [i(jlklal + j2k2a2 + jakaaa)]" (07 (23) 

+ Jaks a)]" u~() ,  (24) exp [i(jlklal + j2k2a2 " a R ~1~ k 

R~, (k). (25) exp [i(jlklal + jzk2a2 + jakaaa)]" (=~ 

The final total density matrix is given by the sum of Eqs. (23), (24), and (25). In 
the present scheme, we employ the set of the isolated main chains along the al 
axis as the unperturbed system: 

* M  
G(mr ~ 1, (26) F~~ = ~ exp [ijlklal]{H~m[jl] + uv tjl]), 

]i=0 

where 

1 V= Z.  
H~~ = XA0, 0, 0] - ~ - Y' [r - R j A ,  0, 011 xv [A, 0, 0], (27) 

jl=O 
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G . v  [ J 1 ]  = , = [- o. - J 1 ,  0, 0] 
p a J 0.r 0 

- 2 ( X , [ 0 ,  0, 0]X~[j1, 0, 0] r - - ~ 2 " "  l x~[j[,O,O]xv[jl, 0, O])}]. (28) 

The unperturbed overlap matrix is: 

~-M 

S~~ = ~ exp [ijlk~a~]S,~[jx, O, 0], (29) 

where S,~[jl, O, 0] is defined in Eq. (15). M in Eqs. (26), (27), and (28) indicates the 
number of neighbouring cells in the main chain interacting with the [0, 0, 0]th cell. 
The zeroth order total energy per unit cell is evaluated as follows. 

E(O) = 21~, ~v ,1=o ~ [Pu~[Jl,(~ �9 0, 0](2H~(~ + G~[jl]}] 

N~ Z~Z,, 
+ IR [o, o, o] - Ro,[o, o, o]1 C r  

1 ~ ~r~ zr Z~Z~, (30) 
+ 2 j = o  , IR,[0, 0, 0j ----R-,,[jl, 0, 0]1 

It is to be noted that both of the zeroth order AO coefficients and the zeroth order 
energy levels at any point k = (kl, k2, k3) are equal to those at (kl, 0, 0), and that 
the zeroth order energy bands are flat toward the kz and k3 axes. Hence, in actuality, 
one has only to solve a set of Fock equations of a main chain polymer, e.g., with 
)'2 = j3 = 0, in order to get the unperturbed solution. 

The interactions between a unit cell in the main chain and those in the nearest 
neighbouring chains are regarded as the first-order perturbation in Eqs. (16) and 
(17): 

F'l'fk] = 17'~'ro 0, 0] + ( ~  ~ )  exp [i(j~kza2 + j3k3a3)] 

•  

.F(u~[O,j2,j3] + ~ exp [ijlklal]F~[j~], (31) 
J ~ = 0  

/ \ 

: [~ ,  ~ exp [i(j2k2a2 + j3k,a3)]Su~[O, jz,jz]. (32) S~(k) 
32 38 

In Eqs. (31) and (32), (~j2 ~j3) means the summation with respect to the [0,A,A]th 
cell interacting with the [0, 0, 0]th cell. For example, in the tetragonal system shown 
in Fig. 2, this summation ranges over the [0, + 1, 0]th and the [0, 0, + 1 ]th cells. 
The first term in Eq. (31) represents the interchain interaction with two AO (/~ and 
v) centres existing in the [0, 0, 0]th cell as follows. 

F(~'[0, 0, 0] = H~'[0, 0, 0] + G~'[0, 0, 0], (33) 
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Fig. 2. Schematic representation of E0 0 1 ~  ~ o . ~  
the cells interacting with the central 
reference cell in a tetragonal one- 
dimensional molecular crystal. The 
number of the interacting cells in the 
main chain (i.e., M in Eqs. (26) and 
so on) is 4 in this model. 

ct 2 

where 

I ) H(~)[0, 0, 0] = x,[0, 0, 0] - ~ X~[0, 0, 0] , (34) 

and 

G.v[0,0,0] = s oot j2 -J2 ,J3  - j a ]  
.0 o 

2 

(35) 

d " In _,~c-(1)raLv, 0, 0], the summation as toj2,ja,j~, an Ja should be taken in the range of 
the nearest neighbouring interchain cells excluding the case of j2 = ja = j~ = 
A = 0. 

The second term in Eq. (31) is the interchain interaction term with two AO (/z and v) 
centres belonging to the [0, 0, 0]th cell and the [0, J2, ja]th cell, respectively: 

(i) " G(t) [fi F~ [0, J2, ja] r - = H~v [0,j2, j3] + -.~ L~,J2,Ja], (36) 

where 

H(.~)[O, j2,ja] = X,[0, 0, 01 - ~  Ir - R,[O, 0, 0]l 

1 0 " " 
+ l r - R ~ [ O ,  j2,ja][)X~[ ,J2,J3]~, (37) 
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and 

o - J=' Ja J2" [ - . . t " , a 2  -J=,Ja -J~] 

"(<x.[O,O,O]x.[O, j2, ja]lxo[O,j '2 ,  j~]x~[O,j~,j~]~ 

- -  0 . . . .  O" " 0 ~ "0 ....... 1 IX~[ ,J2,J3]Xv[ , J2 , Ja ]~}] .  1 <xu[O,O, JX~[ ,J2,J3Jlrl---~2 2 

(38) 

to . . . . . . .  d "" In G(~I)[O, j2,j3], the summation as J2,Ja,J2, an J3 should be taken in the range of 
the nearest neighbouring interchain cells like that in Eq. (35), but on this occasion 
the case ofj~ = j~ = j~ = j~ = 0 is included. 

The third term in Eq. (31) is the intrachain coupled term resulting from the exis- 
tence of the first-order perturbed density matrix: 

F~lv) [jl] = ~ ~ [ D ( 1 ) r l t ' . ,  
. o Jl"=0Jc'=0 [ -o~tJ~ - J 1 ,  0, 0] 

1 "(~x.[O,O,O]x~[jI, O,O]~xD[j~,O,O]xo[J'~,O,O]~ 

, (  o ,  ,, ))] - 2  x.[O, O, O]x~[j;', O, ] ~ Xp[A O, O]x~[j~, O, O] . (39) 

In the present scheme, in which only the nearest neighbouring interchain inter- 
actions are taken into account, the second-order perturbed density matrix yields 
the second-order Fock submatrices as follows. 

Fu(~,(k) = .~:(2~rn.~ L~, 0, 0 ] +  ( j~  . ~ ) e x p  [i(j2k2a2+j3k3a3)] 

~:M 
�9 F~[O,j2,j3] + ~ exp [ij~kzaz]F~'[j~], (40) 

jz=O 
where 

F~(v [0, 0, 0] = [-~o t ,j2 - Jz,J3 - j3] 
p a J2' Ja' 

rle 0 " " 0 . . . .  �9 (<x.[O,O,O]Xv[O,O,O]' l~lxP[ ,J2,J3]Xo[,J2,J3]~ 

'< )}] 2 x.[O, O, O]xo[O,j~,j~] 1 xD[O, jz,j3]x.[O, O, O] , 
F12 

(41) 

O,J2 - j~] F~ (2>[0, j2, j31 = Poo [ - Jz, J~ 
.o a Js' .i2" Ja"/  L 

. 1 
"{<x.[O,O,O]Xv[O, J z , J z ] ~  2 xA'O, je, . . . . . .  JaJxo[O, j=,'"j~]~ 

I< O '  =o ....... 411 o . . . .  o . . ) } ]  2 xu [O,  O, JXa[ , J 2 , J 3 ]  - -  Xt~[ ~J2,J3]Xv[ ,J=,J3] , 
F12 

(42) 
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and 

Fu~)[jl] = .&, /- .~ t.r, - J1, O, O] 
O O" ]1 '=0 ~ i " = 0  L 

�9 o, o, olr ,- o, o, o1" ,, 1---: 

2 x.[O, O, O]xo[j2, O, O, O]z~[j~, O, O] . (43) 

The range of the summation as to various types of j2 andja in Eqs. (40), (41), and 
(42) are similar to those in Eqs. (31), (35), and (38), respectively. On the other hand, 
all of  the second-order overlap matrix elements can be set as zero : 

Sr = O, (44) 

since, in the present scheme, it is supposed that there are no second-nearest neigh- 
bouring interchain interactions. 

4. Solution to the Perturbed Fock Equation 

The set of the perturbed Fock equations for each k made up of the submatrices in 
Eqs. (16) and (17) can be solved by a simple extension of the usual SCF perturbation 
theory [16]. It should be stressed that the present unperturbed system is degenerate 
in essence. We employ here the extended version, suitable for our system, of a 
conventional SCF perturbation theory for degenerate systems presented by O'Shea 
and Santry [11]. 

We introduce several notations for the ease of descriptions as follows. 

~ "  (m) *(0) (0) s~r,(k) = .--,.-, S,~ (k)C,~ (k)C~t (k), (45) 
Ix V 

22 F<p)(k) <m) *(0) (o) = f~.~ (k)C.s (k)C~t (k), (46) 

= F~t  ( k )  - ~ ~ . . J t  ~ , ~ ,  (47) 

f~(1)fk  d ~ k 

Ast(k) L-�89 s~(k) (, o. (48) 

Using these notations, the perturbed density matrices for the wavevector k in Eqs. 
(21) and (22) are evaluated as: 

000 VaO 
~(0)  CO) ~ ~(0)  (0) 

s t 

OCO OOC 
- -  Z Z  (1) *(0) (0) S~ (k)C",~ (k)C~t (k), (49) 

s t 
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and 

OGC VaC v a c  OCt o c c  

R~,~(k) = ~ ~ ~ A*lk"A 'k~C*<~176 ~ C~ (k)C~t (k) 
s t, "~ s t 

{ . . . . ,  >} x ~ A~,(k)A*,,(k) + (i) (i) - s k  ( k ) s ~  (k) - sE>(k 
u 

+ , ( k ) c , ,  (k  o ~ ,  (k  - Adk)~-~>(k) 
u 

_ ~" Sr ~ o~'(a) k e <~ 

o o c  
* ( 0 )  ( 0 )  

- e~~ - ~ A~,,(k)S~)(k) + C~t (k)C~s (k) 
u 

X ( 2 )  _ _  A t u  " ~  - -  ~ ' t u  t ~ ]  ~ us ~ , ' 7  
u 

+ A , , ( )  ~, ( ( , ( )  

- ~ A * # ) S * ~ ' ( ~  . (50) 
t~ 

The per turbed total  density matr ices can be evaluated with the use of  Eqs. (24) and 
P.~ [J~,]2,]~] and .~ []~,j2,]s] must  be iterative, since (25). The calculations of  (~) " " P(2) ' ' " 

these quanti t ie s are involved in F(.~)(k) and F<.ZQ(k). The practical  procedures  for  
the iterative calculation are given as follows: 

1. A first-order calculation is pe r fo rmed  by first evaluating F(,~>(k) f rom Eq. (31) 
with P~,~)[jl, O, 0] equal to zero. 

2. Using P~)[Jl, O, 0] obta ined with the use of  Eqs. (24) and (49) f rom the previous 
F(,~)(k), F(,~)(k) is evaluated again and new values for  P~)[jl, O, 0] are calculated. 

3. Procedure 2 is repeated until the values of  P~,~>[jl, O, 0] are constant.  

4. Subsequently,  a second-order  calculation is pe r fo rmed  by first evaluated 
p(2)r; 0, 0] in Eq. (25) f rom (2) R,~ (k) in Eq. (50) setting o~}~>(k) equal to zero. To  try L J l ~  

calculate (2) o fp(1) r ;  ; ; 1 obta ined in Procedure  3 are used. R,~ (k), the values ,~ L J1, J2, JaJ 

5. Using this P~,~)[Jz, jz, J3], FJ~>(k) is calculated by Eq. (40) and new values for  P,~) 
[j~, j2, Ja] are obta ined by Eqs. (50) and (25). 

6. Procedure  5 is repeated until the values of--,vP(2)rLj1,; 0 ,  0] are constant.  

7. Using the thus-obta ined P~)[jl, j2, js] and P~,~)[J~,J2, j3], the correct ion for  the 
energy level, e(sZ>(k) and e~2)(k), and tha t  for  the total  energy per unit  cell, E (1) and 
E (2), are obta ined as follows: 

4~>(k) = ~ > ( k ) ,  (51) 
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- S y ' ( k W ' ( k ) )  A,~(k) - ~ ,~ ( ) 

= p(o) jl ,  .v tal, 

(52) 

.(2H~m[jl] + G~g)[jl])} + -..~a':'<~ o, 0](2H~[0, 0, O] 

+ a<)~'[o, o, o]) + ~ ~ ~ IRo[o, o, o] - RAo, j2,jdf '  

(53) 
and 

= pro) jl ,  n m r ;  0,0] 
v L ] I = 0  

.F~p[A] + -,~mmr;ul, 0, 0](2H,~~ + G~,~ 

Pc~ 0, <m no-)rn 2H(1) 0, 0]( ~ [0, 0, 01 0]F~ [0, 0, 01 + -u~ t~, 

+ ~c;'~l~rn,~, 0, o]) + P ~  [0,J'),Ja]( uv [O, Jg,Ja 
\J-~ "Ja ' 

+ G~)[0, j2, ja])}[. (54) 

In Eqs. (51)-(54), only the final forms are shown. The summation as to J2 andja 
in Eqs. (53) and (54) is similar to that in Eqs. (31) and (32). 

5. Perturbed Fock Submatrices under the CNDO/2  Version 

Several non-empirical tight-binding LCAO SCF MO calculations have been 
performed of polymers such as polyethylene[17, 18], polyacetylene[19,20], and 
polysulfur nitride[3,4]. In almost all of  these calculations, however, only the 
nearest neighbouring intercell interactions are taken into account and, hence, the 
results obtained are somewhat unreliable[21]. Therefore, at the present stage, one 
still can not disregard semi-empirical versions such as the CNDO approximation 
[9], in which the intercell interactions are included up to a considerably long-range 
distance[6,14,15]. In this section, we present the forms of the perturbed Fock 
submatrices under the CNDO/2 approximation[9]. 

The forms of H~~ in Eq. (27) and G~~ in Eq. (28) are the same as those in the 
usual CNDO/2 version of the tight-binding LCAO SCF MO method for polymers 
[14,15]. The first-order submatrices //(1) �9 �9 �9 ~*v [J1,Jz,.]3], <1) �9 �9 Guv[Jl,J2,ja], and F~)[jI] in 
Eqs. (34) ~ (39) are simplified as follows: 

u t ~  

Z.Y.Eo.o,o>Eo,j2,j31 (t* = "), (55) 
o 
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/ 

~.,, Lv, -~Dm~ 0, 0]y~m,o,0~m,j2,j~ (/z = 0,  (56) 

H ( 1 ) r o  ; ; 1 .v t ,S2, JSJ = fl.vS.~[0, J2, ja], (57) 

G(1)ro j2,ja] = O, (58) kJ, V LV~ 

1 (1) - ~ P ~  [0, 0, 0]Y,m.o.oMo.o.o; (/z # v) 

YI=O p 

I (1) 
- ~ P ~ .  [0, 0, 0]y.Eo,o,o].m,o.m (/* = v), (59) 

1 (1) Fu(~)[Jl] = - ~ P ~ .  [ - J l ,  0, 0]y~to,o.o>m,o,o~ (jl # 0). (60) 

In the above equations, the summation as to J2 and ja is the same as that in Eqs. 
(31) and (32). Zp represents the core charge of the atom to which AOp belongs, and 
Yvta,J=,J3>ul,/=.J~] the two-centre electron repulsion between AO /. in the 
[jl,j2,ja]th cell and AO v in the [j~,j~,j~]th cell evaluated by: 

Y.tj~,j>~>u'~,jL;~] = (X~A[Jl, J2, J3]x~A[J> J2, Ja] r~-~21 

J,~, j~ ]X~B [J;_, J~, J ~ ] ) ,  (61) 

l 

[J;, XsB 

where X~A and X~B denote the valence shell s AO's on atom A and B, to which AO/z 
and AO v belong, respectively./3.~ is the bonding parameter between AO's/z and v. 

The second-order submatrices in Eqs. (41), (42), and (43) are similarly simplified 
as follows: 

F 0 (~ # v) 

* uv L~, S"  p(1) ro o~, on t , 0, 0]yuto,o,oaoto,J~,~a] (/. = v), (62) 

l (1) F,(mr0~v L ,~,; ja] = --~ Pv~ [0, --j~, --ja]Y~m,o,o]vm,~,~a2, (63) 

-~P$~)[O, O, O]r,,~o,o,o~,,~o,o,o~ (r~ # .) 

Fa~)[O] = ~ ~ -poP(2)raLv, O, O]y,,m,o,o>r,,,o,o, 
j l = O  p 

1 p(~)rn 00]y~,m.o.o].to.o,o] - I~p. L V ~  , (/z = .), (64) 
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(2) �9 l (2) 
F~v [J1] = - ~ P ~  [ - J l ,  0, 0]7,E0,0,0J~tjl.o.0~ (j~ -r 0). (65) 

Furthermore,  in this C N D O / 2  approximation,  the overlap matrix elements 
S~v[jl , j2,j3] in Eqs. (14) and (17) are reduced to :  

S,v[j l , j2 , j3]  = {80 ~ (Jl = J2 = J3 = O) 
(otherwise). (66) 

Using this equation, for example, the first-order quantities in Eqs. (45) and (47) 
are simplified as follows. 

S~:)(k) = 0, (67) 

~ ' ~ ( k )  = F~'(k). (68) 

6. Conc lud ing  R e m a r k s  

We have developed a non-empirical tight-binding L C A O  SCF M O  treatment o f  
one-dimensional molecular crystals. The present approach enables the calculations 
to obtain the valuable informations on the electronic processes of  the one-dimen- 
sional molecular crystals as well as the biopolymers. 

The third-order treatment of  further neighbouring interchain interactions might 
be required for unusually strongly interacting chains. But even in such situations, 
the present second-order calculations will provide valuable results of  the semi- 
quantitative level. Practical applications of  the present t reatment to several prob- 
lems of  the one-dimensional molecular crystals will be discussed elsewhere. 
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